It Does not Matter How Much Water My Soil Holds The Osmotic Discussion

Irrigation Australia 2011 Conference Tasmania

Water ON TARGET ON TIME

David McKechnie

CPAg, CIAg, CPSS North Ryde NSW

Generally -Water in the Soil can be measured in three ways


·Volume

· Time

·Energy

Various units for each

Irrigation Is scheduled by one, or more methods

Cover 3 Points

Soil Water Holding Capacity (SWHC)

Soil Texture to ??????

Comments on EC and the SWHC

THE SOIL

www.davidmckechnie.com

Definition of Terms SWHC

AW FC – PWP

 FC Volume or energy of water after saturation after 24 hours Drainage and others

 PWP The point a plant can not recover from (- 1500 kpa) and others

Other Terms for SWHC

AW = FC -PWP

• EW + DUL - DLL

–EW Effective Water

–DUL Drained Upper Limit

-DLL/LL Drained Lower Limit

THE SOIL

www.davidmckechnie.com

Volume to Energy SWHC

- FC / DUL
 - Measured 24 hrs. to 2 days after rainfall or irrigation
 - -10kpa
- -33kpa

-100kpa

- PWP / DLL
 - The stage a plant cannot obtain useful water
 - -1500kpa

				Equivalent as						
		Matrix	cylindrical	relative	freezing					
		Potential	pore	humidity	point					
			diameter		depression					
(bar)	(pF)	(J kg-1 or kPa)		(%)	(K)					
0.001	0	-0.1	3 mm	100						
0.01	1	-1	300um	100						
0.1	2	-10	30 <i>u</i> m	99.99						
1	3	-100	3um	99.93	0.08					
10	4	-1,000	300nm	99.28	0.8					
100	5	-10,000	30nm	93	8					
1,000	6	-100,000		48.4						
10,000	7	-1,000,000		0.07						
	0.001 0.01 0.1 1 10 100 1,000	0.001 0 0.01 1 0.1 2 1 3 10 4 100 5 1,000 6	(bar) (pF) (J kg-1 or kPa) 0.001 0 -0.1 0.01 1 -1 0.1 2 -10 1 3 -100 10 4 -1,000 100 5 -10,000 1,000 6 -100,000	(bar) (pF) (J kg-1 or kPa) 0.001 0 -0.1 3 mm 0.01 1 -1 300um 0.1 2 -10 30um 1 3 -100 3um 10 4 -1,000 300nm 100 5 -10,000 30nm 1,000 6 -100,000	(bar) (pF) (J kg-1 or kPa) (%) 0.001 0 -0.1 3 mm 100 0.01 1 -1 300um 100 0.1 2 -10 30um 99.99 1 3 -100 3um 99.93 10 4 -1,000 300nm 99.28 100 5 -10,000 30nm 93 1,000 6 -100,000 48.4					

[•]kPa is commonly used for potential, but is a unit of pressure. (energy)
•Table 1 Units of soil suction and its equivalents (From Hanks 1992 pp. 26)

[•]Table 1. Units of soil suction and its equivalents (From Hanks 1992 pp 25) www.davidmckechnie.com

As % of AW Removed from Soil	Sand / Sandy Loam	Loam	Clay / Clay Loams			
Saturated (Above FC)	Free water appears on squeezing	Free Water CAN be squeezed out	Soil is sticky			
At FC	No Free water - Leave mark on hand	Soil Stickily - able to roll into "worms"	As per loam			
0-25	Forms weak ball - breaks easily	Soil is coherent and pliable - Unable to form worms	Form ribbon in fingers - has slick feeling			
25-50	Appears Dry - Ball will not hold together	Soil Coherent - Forms Ball under pressure	Forms Ball - just fingers out			
50-75	Appears Dry - Will not form Ball	Forms Crumbly ball under pressure	Will Form Ball - Not Ribbon			
75-100 to PWP	Soil is dry and loose - Falls though fingers	Crumbly - Small Crumbs will Powder	As for Loam			

From Reid 1990. The Manual of Australian Agriculture. 5th Ed. pg 735. www.davidmckechnie.com

An Energy Equation

$$\psi_W = \psi_M + \psi_S + \psi_P$$

 ψ_W is the water potential

 ψ_{M} is the matrix potential

 $\psi_{\it S}$ is the solute or osmotic potential

 ψ_P is the pressure potential.

www.davidmckechnie.com

Plant Water Use General Points

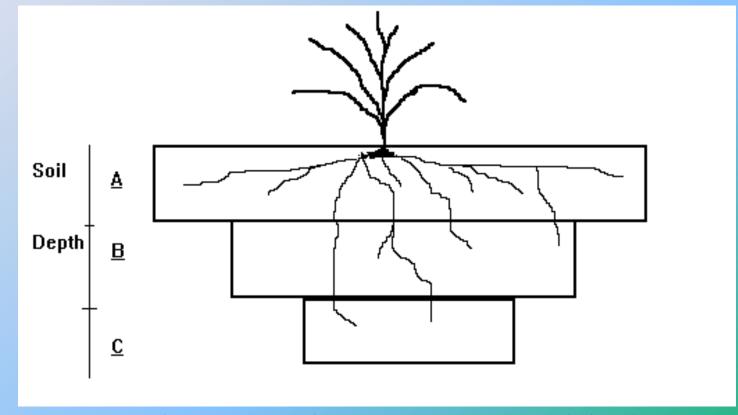
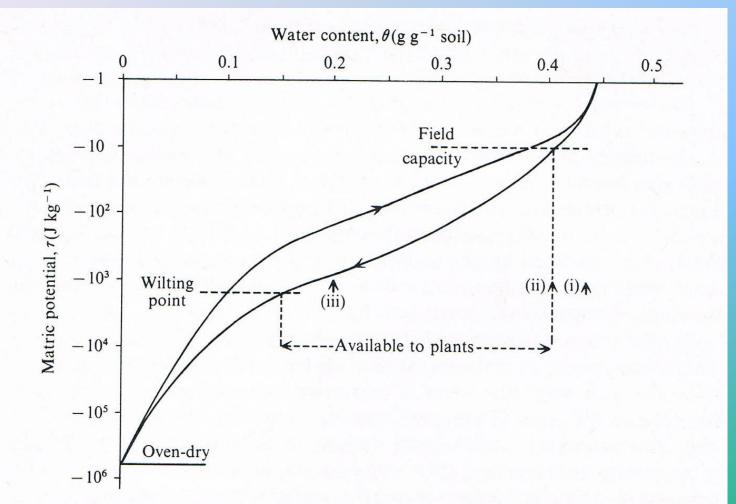


Diagram 1. Plant roots and water uptake over soil depth Generalisation


www.davidmckechnie.com

• 40 %

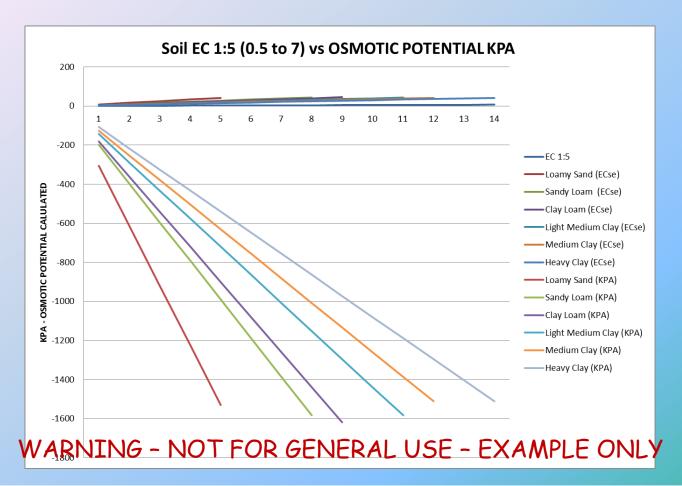
• 30%

• 20%

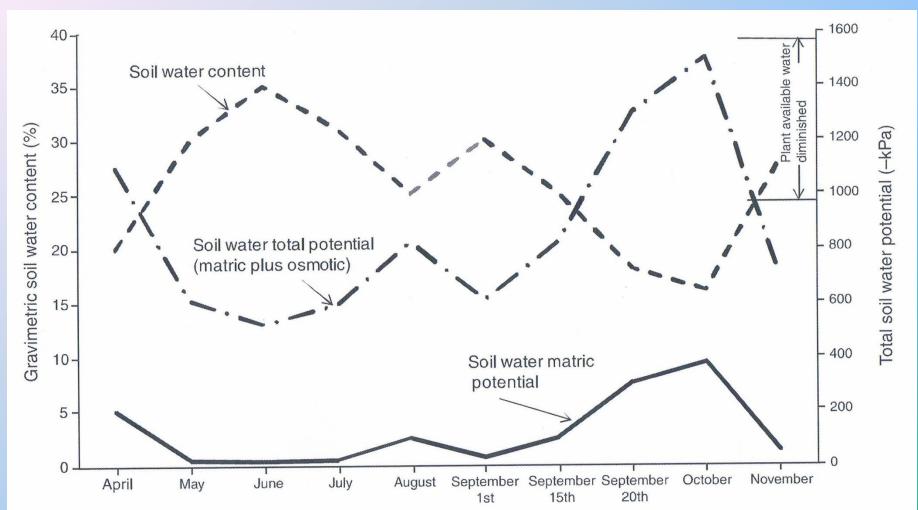
• 10%

•Graph 1. Matrix Potential vs Moisture. Note Hysteretic effect. (From Milthorpe & Moorby 1975 Pg 16).

SALINITY AFFECTS


www.davidmckechnie.com

Electrical Conductivity Osmotic Potential


 Various EC terms - ECse, ECw, EC1:5, ECa, ECp, ECe, etc..

 EC to ppm conversation range 1EC =540 to 740ppm

 EC has been converted to Osmotic Potential – Formula needs to be confirmed for different applications, soils, etc..

EC 1:5	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
Loamy Sand (ECse)	8.5	17	25.5	34	42.5									
Sandy Loam (ECse)	5.5	11	16.5	22	27.5	33	38.5	44						
Clay Loam (ECse)	5	10	15	20	25	30	35	40	45					
Light Medium Clay (ECse)	4	8	12	16	20	24	28	32	36	40	44			
Medium Clay (ECse)	3.5	7	10.5	14	17.5	21	24.5	28	31.5	35	38.5	42		
Heavy Clay (ECse)	3	6	9	12	15	18	21	24	27	30	33	36	39	42

•Graph 2. Gravimetric soil water content (%), matrix potential of soil water (-kpa) and total soil water potential of a clay loam layer (20-60cm with an EC1:5 of 1 dSm-1 during a wheat growing season. From Rengasamy 2010.

Summary

- It does Matter How Much Water the Soils Holds
- BUT Consideration Needs to be made for soil characteristics
- With different water sources used EC / Osmotic Potential should be taken into account to the availability of water to the plants from the soil

Further REFERENCES:

Hanks, R. J. 1992. Applied Soil Physics, Soil and Water Applications. Second Edition. Springer-Verlag New York Inc.

Milthorpe, F. L. & Moorby, J. 1975. An Introduction to crop Physiology. Cambridge University Press.

Reid, R. L. Editor. 1990. The Manual of Australian Agriculture. 5th Edition.

Rengasamy, P. 2010. Soil processes affecting crop production in salt-affected soils. Functional Plant Biology. 37. 613-620.

K-sat slower than K-unsat -Why?